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Abstract: We present a hierarchical Bayesian model (HBM) for capture–mark–recapture (CMR) data analysis. It aims
at estimating the probability of capture (θi) and the total population size (Ni) in a series of I years i = 1,…,I. The
HBM assumes that the θis and Nis are sampled from a common probability distribution with unknown parameters. It is
compared with the model assuming independence between years in the θis and Nis (ABM). We show how a transfer of
information between years is organized by the HBM. We compare the merits of HBM vs. ABM to estimate the spawn-
ing run and smolt run of an Atlantic salmon (Salmo salar) population of the River Oir (France) over a period of 17
years. In the spawners case, yearly data are poorly informative. Consequently, the HBM greatly improves posterior in-
ferences compared with the ABM in terms of dispersion and robustness to the choice of prior. In the smolts case, the
HBM does not significantly improve inferences compared with the ABM because data are more informative. We dis-
cuss why hierarchical modeling should be recommended in any ecological study where the data are collected on sev-
eral sampling units that share some common features.

Résumé : Nous proposons un modèle Bayesien hiérarchique (HBM) pour analyser des données de capture–marquage–
recapture. Ce modèle permet d’estimer la probabilité de capture (θi) et la taille de la population (Ni) pour une série de
I années i = 1,…,I. Le HBM suppose que les θis et les Nis sont issus a priori d’une même distribution de probabilité
dont les paramètres sont inconnus. On le compare à un modèle qui suppose l’indépendance des θis et des Nis a priori
(ABM). Nous montrons comment le HBM organise le transfert d’information entre les années. Nous comparons les
avantages respectifs du HBM et du ABM pour estimer les migrations d’adultes et de smolts de la population de Sau-
mon atlantique (Salmo salar) de la rivière Oir (France). Dans le cas des adultes, les données annuelles sont peu infor-
matives. Le HBM améliore les inférences par rapport au ABM, en terme de dispersion et de robustesse au choix des
distributions a priori. Dans le cas des smolts, le HBM n’améliore pas significativement les inférences par rapport au
ABM car les données annuelles sont plus informatives. Finalement, nous recommandons d’utiliser un modèle hiérar-
chique pour analyser des données en écologie dans tous les cas où les données traitées concernent des unités qui parta-
gent une caractéristique commune. Rivot and Prévost 1784

Introduction

The Bayesian approach has a great potential for the treat-
ment of capture–mark–recapture (CMR) models. Although it
is one of the main features of Bayesian data analysis, hierar-
chical modeling seems to have aroused little interest for
CMR data. This paper investigates the potential of Bayesian
hierarchical modeling applied to estimating the size of a
population in a series of years, either consecutive or not, for
which yearly CMR data have been collected under the same
experimental design.

The Bayesian framework may significantly improve statis-
tical inferences from CMR data analysis (Smith 1991;
Pollock 1991; Garthwaite et al. 1995). Bayesian estimators
perform better than classical ones in data-poor situations
(Gazey and Staley 1986; Chao 1989). Indeed, classical point
estimators are mostly based on asymptotic approximations.
Therefore, bias can be relatively large when sample sizes are

small (Seber 1982). Confidence intervals around maximum
likelihood estimates can also be inaccurate when they do not
account for the skewness of the underlying likelihood distri-
bution (Sprott 1981; Smith 1988). In contrast, Bayesian pos-
terior inferences about the quantities of interest naturally
reflect the entire shape of their distributions. The develop-
ment of intensive computation methods now offers numeri-
cal procedures for solving a wide variety of inference
problems within the Bayesian framework. Importance sam-
pling or Markov chain Monte Carlo (MCMC) methods
(Gelman et al. 1995) enable easy sampling from posterior
distributions even in the most complex multiple CMR cen-
sus models (George and Robert 1992; Basu and Ebrahimi
2001). By comparison, standard analytical approaches, such
as maximum likelihood techniques, may become rapidly
untractable when model complexity increases.

Relatively long but sparse (small sample size) series of
data are quite common when dealing with CMR surveys
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aimed at estimating wild populations over a series of years.
To analyze such data sets, one may first be tempted by con-
sidering the complete independence between years, i.e., a
model where the CMR experiment performed each year is
totally unrelated to those of the other years. At another ex-
treme, one can ignore the between-year variability by pool-
ing all years. An exchangeable hierarchical model is a
sensible compromise between these radically contrasted
views (Gelman et al. 1995). It assumes that the years are
neither completely identical nor fully unrelated, but consid-
ers the yearly unknown variables as a random sample from a
common probability distribution. In data-poor situations, the
model assuming independence between years may lead to
poor posterior inferences. Indeed, little information may be
brought by the data in certain years, what may in turn result
in highly imprecise or unreliable posterior distributions. An-
other serious drawback is that results may be highly sensi-
tive to the prior choice (Gazey and Staley 1986; Chao 1989)
and thus widely open to criticism because there is not a
unique accepted way for assigning prior probabilities.

In this paper, we show two ways in which hierarchical
modeling can significantly improve the inferences. First, the
hierarchical approach can transfer valuable information from
neighboring data to estimate the total population size in
years for which CMR data are poor. Second, it offers a sen-
sible solution to the critical problem of the sensitivity of the
posterior inferences to the prior choice. Smith (1991) and
George and Robert (1992) presented a hierarchical model for
the catchability in the context of a multiple mark–recapture
census of a closed population. However, the authors do not
really discuss how hierarchical structure may improve the
analysis of CMR data. Although he explicitly did not set his
study in a CMR framework, Raftery (1988) already pro-
posed a hierarchical model for N when it is estimated from a
multiple Binomial sampling with a constant probability of
“success”. He pointed out that the hierarchical structure is an
interesting alternative to classical choices of discrete
bounded prior on N. Indeed, it allows a convenient represen-
tation of a vague prior on N, avoiding the critical problem of
the high sensitivity of inferences to the choice of the bounds.
More recently, Su et al. (2001) applied hierarchical model-
ing to account for similarities in run timing among years for
pink salmon (Oncorhynchus gorbuscha) escapement. The
authors illustrated well how the hierarchical method signifi-
cantly enhances the ability to estimate escapement for years
where only few data are available.

We set a model that can accommodate any case where the
CMR experiments are performed over a series of years fol-
lowing a homogeneous design similar to the two-sample
Schnabel census for a closed population, i.e., the simple
Petersen experiment (Seber 1982). We first concentrate on
the conceptual framework of the hierarchical modeling with-
out entering into technical details. The hierarchical model,
jointly treating all years, appears as the most general model.
We highlight that the model treating all years independently
can be considered a particular case of the hierarchical model.
We show how the between-year dependency introduced by
the hierarchical assumption organizes a transfer of informa-
tion between years. It enables one to make use of the full
historical information to construct a modified prior distribu-
tion that should improve yearly inferences.

We apply our methodology to two contrasted numerical
case studies. We treat two data sets of CMR surveys de-
signed to estimate the spawning run and the smolt run of an
Atlantic salmon (Salmo salar) population of the River Oir
(France) over a period of 17 years. We focus on the compar-
ison between the posterior inferences obtained under the hi-
erarchical model and the model assuming between-year
independence. Posterior inferences are carried out by
Markov chain Monte Carlo (MCMC) methods (Gelman et
al. 1995). As the problem of setting the priors is always cru-
cial in Bayesian analysis, we carefully investigated the sensi-
tivity of our results to the prior choices in an expanded
appendix.

Materials and methods

CMR framework
We consider a data set from a population survey to esti-

mate the size of the same population in a series of I years
(typically I would be between 10 and 100). In the following,
the subscript i stands for the year i. The data available come
from CMR experiments analogous to the well-known two-
stage Petersen experiment. A first-capture sample is carried
out by means of a trap. Some of the individuals caught are
marked and released. Recaptures of marked individuals are
then carried out. Hypotheses needed to assume a Petersen-
type model for a given year are supposed to be verified (they
will be detailed later in the numerical examples). The un-
known size of the population in year i is denoted Ni, and the
CMR data collected for the same year are denoted di. We
characterize the trap by a trapping efficiency, denoted θi, that
can be interpreted as the probability of each individual to be
caught. The entire series of unknown variables of interest are
denoted θ = {θi}i = 1,…,I and N = {Ni}i = 1,…,I and data are de-
noted {di}i = 1,…,I.

The CMR data are used to make inferences on both the
trap efficiencies θ and the population sizes N. In the follow-
ing, we first develop an exchangeable hierarchical Bayesian
model (HBM) that combines all years to derive joint infer-
ences about the entire series (N,θ). By jointly treating all of
the years, the HBM provides a mean to estimate each (Ni,θi)
by taking advantage of the information coming from the data
of the other I – 1 years (denoted {1,…,I}≠i in the following).
Then, we derive a second model that can be considered a
particular case of the HBM, referred as the annual Bayesian
model (ABM). The ABM is less parsimonious than the HBM.
It assumes that the θis and Nis are independent between
years: posterior inferences about variables are derived inde-
pendently for each year i using only the data from the year
in turn. A completely pooled Bayesian model, ignoring the
between-year variability, can also be considered an extreme
particular case of an exchangeable model. It is the most par-
simonious model but is of little interest and is therefore not
further investigated.

The following notations hold in the sequel. P(·|·) denotes a
conditional probability distribution and π(·) a prior distribu-
tion, with arguments determined by the context. Let us de-
note as X any random variable that we seek to estimate and
as y the observations available to estimate X. The unnormalized
Bayesian posterior density of X|y is

(1) P(X|y) ∝ π(X)P(y|X)

© 2002 NRC Canada

Rivot and Prévost 1769

J:\cjfas\cjfas59\cjfas5911\F02-145.vp
Wednesday, December 04, 2002 10:55:49 AM

Color profile: Disabled
Composite  Default screen



The symbol ∝ means that both terms are proportional. The
coefficient of proportionality is a normalizing factor ensur-
ing that the posterior P(X|y) integrates to one. It depends on
y only and is thus a constant with regard to X. P(X|y) is the
sampling distribution, i.e., the joint distribution of the obser-
vations y conditionally on X. When regarded as a function of
X, P(X|y) is called the likelihood and is denoted L(X|y).

Exchangeable HBM
The HBM assumes a hierarchical structure on both the

trapping efficiencies and the total population sizes. This
model combines all years together through a methodology of
estimation that explicitly accounts for the similarities in the
CMR experiments and for the dependence among the popu-
lation sizes.

Basically, the hierarchical assumption is a conditional
structure on the probability distribution (Gelman et al. 1995).
Let us first consider the hierarchical hypothesis on the trap-
ping efficiencies. The HBM assumes that the θis are sampled
from a common population distribution π(θi|γ), conditional
on unknown hyperparameters γ. In turn, a prior π(γ) is as-
signed to the hyperparameters. The θis arise from analog ex-
periments using the same trapping gear and the same
experimental protocol. The hierarchical structure of the
probability distribution sets the dependency between the θis
by expressing both similarity and heterogeneity among the
θis. It allows for between-year variations of the θis resulting
from unpredictable changes in environmental conditions or
fish behavior (e.g., river discharge or temperature). The
HBM considers γ as random with a prior that will be up-
dated by the data of all years. This updating of the
hyperparameters distribution (details follow) allows transfer-
ring of information between years.

A hierarchical structure is also imposed on the total popu-
lation size N = {Ni}i = 1,…,I. The population investigated dur-
ing the period i = 1,…,I is the same population but observed

in different years. The size of the population is generated
and constrained by some common ecological processes
whatever the year. Thus, the estimation that one may derive
for the years {1,…,I}≠i are also partially informative with re-
gards to the population size of a given year i. It is then ap-
propriate to model a priori the Nis as issuing from a common
population distribution π(Ni|δ) with unknown random hyper-
parameters δ with their own prior π(δ).

The HBM jointly treats the entire time series i = 1,…,I.
All variables (Ni,θi) depend on the hyperparameter vector de-
noted φ = (γ,δ). The joint posterior P(N,θ,φ|data) in eq. 2 (de-
tailed in Table 1) is obtained by the combination of the joint
prior π(N,θ,φ) and the likelihood term L(N,θ,φ|data)

(2) P(N,θ,φ|data) ∝ π(N,θ,φ)L(N,θ,φ|data)

The definition of the joint prior π(N,θ,φ) relies on two
common hypotheses. We assume first the independence be-
tween (θ,γ) and (N,δ) in T1.1 and second the exchangeability
of the θis and the Nis in T1.2 (Gelman et al. 1995). Let us
first detail the exchangeability for the θis. The joint prior for
(θ,γ) reflects the dependence among the θis. Exchangeability
is a weaker concept than statistical independence. It is based
on the hypothesis that before seeing the results of the CMR
experiments, i.e., in the absence of data, there is no argu-
ment to distinguish a priori the θis. Mathematically,
exchangeability means that the joint distribution of the θis re-
mains unchanged by any permutation of the i indices. Unlike
in a sequential Bayesian model, the order by which data
have been gathered does not bear any significance. As sug-
gested by Gelman et al. (1995), the most appropriate ex-
changeable distribution for (θ,γ) considers each θi as
independently sampled from the conditional population dis-
tribution governed by γ, π(θi|γ). We made the same
exchangeability assumption for the Nis. Combined with the
independence between (θ,γ) and (N,δ), the exchangeability
assumption leads to the joint prior in T1.2.

The likelihood term L(N,θ,φ|data) is the product of the
yearly likelihood functions L(Ni,θi,φ|di) denoted Li in the
following. The Lis stem from the stochastic model underly-
ing the sampling process of the CMR experiments. Thus, the
likelihood does not depend on the hyperparameter vector φ,
and the simplification in T1.3 holds. The sampling distribu-
tions that we use in this paper are the standard Binomial and
Hypergeometric distributions (see, for instance, Gazey and
Staley 1986). The likelihood functions and the underlying
hypotheses are detailed in the section devoted to the numeri-
cal applications.

The resulting full joint posterior distribution of (N,θ,φ) is
detailed in T1.4. The posterior distribution of the quantities
of interest in T1.5 is obtained by integrating out the full joint
posterior with respect to the hyperparameter vector φ (con-
sidered nuisance parameters).

ABM
The ABM that assumes the between-year independence of

both the θis and Nis can be considered a particular case of
the most general exchangeable hierarchical model. The
ABM assumes a priori that the θis and Nis are fully unre-
lated. Under this hypothesis, the CMR data of the year i are
only relevant to estimating the corresponding θi and Ni. The
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Notations

N = {Ni}i = 1,…,I, θ = {θi}i = 1,…,I, data = {di}i = 1,…,I

Hyperparameters φ = (δ,γ)

Joint prior distribution for (N,θ,φ)

Independence assumption

(T1.1) π(N,θ,φ) = π(N,δ)π(θ,γ)

Exchangeability assumption

(T1.2) π(N,θ,φ) = π(δ) π
i

I

=
∏

1

(Ni| δ)π(γ) π
i

I

=
∏

1

(θi|γ)

Likelihood

(T1.3) L(N,θ,φ |data) = L(N,θ |data) = L
i

I

=
∏

1

(Ni,θi|di) = L
i

I

=
∏

1
i

Posterior distribution

(T1.4) P(N,θ,φ |data) ∝ π(γ)π(δ) π
i

I

=
∏

1

(Ni| δ) (θi|γ)Li

(T1.5) P(N,θ |data) ∝ [π∫ (N,θ,φ)L(N,θ,φ |data)]dφ

Note: The notation dφ means that the integration is made with respect
to the variable φ.

Table 1. Hierarchical Bayesian model.
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ABM still needs to assign a prior to each θi and Ni, but it no
longer assumes random hyperparameters common to all
years. By analogy with the HBM setting, those annual priors
are denoted π(Ni|δi

0) and π(θi|γ i
0), where the parameters φ i

0 =
(δi

0,γ i
0) are fixed to particular values, either equal or not be-

tween years. This impedes any transfer of information be-
tween years, and inferences about a particular year i fully
ignore what can be learned from experiments carried out in
the years {1,…,I}≠i. When the same population is surveyed
during several years, assuming the between-year independ-
ence is counterintuitive and can result in a loss of informa-
tion. In contrast, by structuring the between-year
dependency, the HBM acknowledges that the CMR experi-
ments of years {1,…,I}≠i are partially informative with re-
gards to the trapping efficiency and the population size of
year i. The pattern of dependence and the amount of infor-
mation that is transferred between years will be set a posteri-
ori through the updating procedure of the hyperparameters.

One may also build “hybrid” models that make the inde-
pendence assumption for only one of the two components θ
and N, the other one still being modeled under a hierarchical
structure. We compare inferences obtained under the HBM,
the ABM, and the two “hybrid” models to investigate which
of the two components, θ or N, is the most sensitive to inde-
pendence vs. hierarchical modeling.

Choice of priors and sensitivity analysis
Setting the prior distributions is a critical point of any

Bayesian analysis. All priors π(θi) and π(Ni), conditional pri-
ors π(θi|γ) and π(Ni|δ), and hyperpriors π(γ) and π(δ) used in
numerical applications are detailed in Appendix A. We in-
vestigated how the posterior inferences obtained in the ABM

and HBM are sensitive to the choice of priors. This issue is
also deferred to Appendix A.

Interpreting the HBM
Inferences about new observable variables denoted (

~
,
~

N θ)
can be derived through the predictive distribution conditional
on the observed data (Gelman et al. 1995). It is an average
of the conditional population distribution P(N,θ|φ) over the
posterior distribution of the hyperparameter φ conditioned on
all observed data. The difference between the marginal prior
in T2.1 and the posterior predictive in T2.2 reflects the
amount of information brought by the data of all years to up-
date the prior distribution common to all years (Table 2).

In the HBM, the data of all years are included to estimate
the variables of interest (Ni,θi) for any particular year i. As
shown in T2.3–T2.5, the marginal posterior P(Ni,θi|data) in
the HBM can be rewritten as the product of two terms: the
likelihood term Li and a complex integral term denoted
π*(Ni,θi,data*

i ). In this integral, all random variables except
(Ni,θi) are integrated out, and the integration depends on data
of years {1,…,I}≠i, denoted data*

i . Thus, it can be considered
a function of (Ni,θi) and data*

i . The term π*(Ni,θi,data*
i )

should be interpreted as a “modified” prior on (Ni,θi). Equa-
tion T2.6 points out that π*(Ni,θi,data*

i ) is the marginal prior
of (Ni,θi) obtained by integrating over φ when φ is distributed
as P(φ|data*

i ), i.e., the posterior obtained with data of each
year k in {1,…,I}≠i. Note that the contribution of each of the
years {1,…,I}≠i to this modified prior is judiciously weighed
according to Lk, i.e., according to how informative each
year is about the population size and the trapping effi-
ciency. It is through the modified prior π*(Ni,θi,data*

i ) that
the information from the data of years {1,…,I}≠i is trans-
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Predictive

Marginal predictive prior distribution for unknown observable variables (
~
N ,

~
θ)

(T2.1) π (
~
N ,

~
θ) = [π∫ (N,θ�φ)π(φ)]dφ

Posterior predictive distribution conditional on the observed data

(T2.2) P(
~
N ,

~
θ |data) = [π∫ (N,θ |φ)P(φ |data)]dφ

Marginal posterior distribution of year i

For each i in 1,…,I, the marginal of the variables of interest writes

(T2.3) P(Ni,θi|data) = [ [∫∫ P(N,θ,φ |data)] d{Nk,θk}k ≠ i]dφ

Extracting the term in “i” from the posterior P(N,θ,φ |data) yields

(T2.4) P(N,θ,φ |data) ∝ π(φ)π(Ni,θi|φ)Li [
k i≠
∏ π(Nk,θk|φ)Lk]

We denote as datai
* the data of all years except i. The term Li in T2.4 does not depend on φ. By extracting it from the integral on φ in

T2.3, it becomes

(T2.5) P(Ni,θi|data) ∝ π*(Ni,θi,datai
*)Li

where the term π*(Ni,θi,datai
*) equals

(T2.6) π*(Ni,θi,datai
*) = [π∫ (Ni,θi|φ) [π∫ (φ) (π

k i≠
∏ (Nk,θk|φ)Lk)] d{Nk,θk}k≠i]dφ = [π∫ (Ni,θi|φ)P(φ |datai

*)]dφ

Note: Predictive distribution and expression of the marginal P(Ni,θi|data). The notations dφ and d{Nk,θk}k≠i mean that the integrations are made with
respect to the variable φ and {Nk,θk}k≠i, respectively.

Table 2. Hierarchical Bayesian model.

J:\cjfas\cjfas59\cjfas5911\F02-145.vp
Wednesday, December 04, 2002 10:55:49 AM

Color profile: Disabled
Composite  Default screen



ferred into the estimation of the variables (Ni,θi). The higher
the information carried by the posterior P(φ| data*

i ), the more
informative the modified prior distribution π*(Ni,θi,data*

i ).
In the ABM, the posterior of (Ni,θi) is the combination of

Li with a prior π(Ni,θi|φ i
0) where φ i

0 is fixed to a particular
value. Under such a model, the analyst often faces the di-
lemma between choosing φ i

0 so that π(Ni,θi|φ i
0) is uninforma-

tive and taking the risk of unreliable inferences in data-poor
situations, and choosing φ i

0 that brings substantial informa-
tion a priori and taking the risk of influencing the inferences
by personal judgment not formally related to the data in
hand. The HBM proposes an intermediate approach as a sen-
sible solution to this dilemma by assigning higher degrees of
credibility to some values of hyperparameters according to
the data available.

Numerical examples

An Atlantic salmon population survey
We apply the framework of the previous section to a data

set coming from the survey of the Atlantic salmon popula-
tion on the Oir River (Normandy, France) since 1984. The
Oir River is a spawning tributary of the Sélune River, which
flows into the English Channel. The characteristics of the
watershed are described in Baglinière et al. (1993).
Spawners enter into Oir River to spawn during late fall and
early winter (October–December). Smolts migrate out to the
sea in the springtime (mainly in April). Both smolt and
spawner runs are composed of several age classes (see
Baglinière et al. 1993 and Prévost et al. 1996), but the age
structure is not considered in this study.

The Cerisel trapping facility is located 2.3 km upstream
from the confluence with the Sélune River and 12.3 km
downstream from an impassable dam. The trapping facility
consists of a double upstream and downstream partial count-
ing fence (Baglinière et al. 1993) (Fig. 1). The inward and

outward salmon migrations to and from the entire area above
the trap are monitored. The downstream trap is used to cap-
ture smolts during seaward migration but also spent adults
after spawning. The upstream trap is used to capture spawn-
ers swimming upstream. Both upstream and downstream
traps are operated every day during the migration time so
that no pulse of migration is missed. Data currently available
are from 1986 to 2001 for the smolt run and from 1984 to
2000 for the spawning run (Tables 3 and 4). They have been
consistently gathered under a homogeneous experimental
design through the entire study period.

The CMR experiments are different in their details for the
smolts and the spawners, thus leading to distinct models.
The two following sections describe the data, the stochastic
models, and the subsequent sampling distributions that de-
fine the likelihood terms Li (Table 5).

Spawning run
For each year i from 1984 to 2000, ci denotes the number

of spawners caught at the upstream trap. A number xi of fish
trapped is not released upstream either because they die
during manipulation or because they are removed for experi-
mental use or hatchery production. mi denotes the number of
fish marked and released (mi = ci – xi). The fish released up-
stream from the trap are individually tagged. The recapture
sample is gathered during and after spawning. Let us denote
as ri the sum of all those fish recaptured or observed (see
thereafter) and as rmi the fish marked among ri. Our model
leading to the likelihood Li in T5.3 requires a few somewhat
simplifying hypotheses (H1–H4). H1: all of the Ni spawners
are assumed to be independently and equally catchable in
the trap, with a probability θi. θi is considered constant over
the migration season. H2: the spawner population upstream
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Fig. 1. Scheme of the Cerisel trapping facilities working as a
double upstream and downstream partial counting fence. � indi-
cates the released site of tagged smolts and spawners. The re-
leased site and the downstream trap are 1 km away from each
other.

Year ci xi mi ri rmi

1984 167 13 154 22 12
1985 264 48 216 25 21
1986 130 37 93 9 5
1987 16 4 12 24 2
1988 226 43 183 12 12
1989 235 36 199 56 56
1990 15 8 7 17 2
1991 44 0 44 24 23
1992 31 11 20 9 4
1993 100 19 81 7 4
1994 32 14 18 5 1
1995 109 7 102 46 39
1996 70 15 55 82 25
1997 56 22 34 15 12
1998 34 4 30 36 6
1999 154 6 148 35 23
2000 53 0 53 37 4

Note: ci denotes the number of spawners caught at the upstream trap; xi

denotes the number of spawners that died during manipulation or that are
removed for experimental use or hatchery production; mi is the number of
spawners marked and released (mi = ci – xi); ri is the recapture sample;
and rmi the number of fish marked among ri. See text for more details
about the experiments.

Table 3. Capture–mark–recapture data for spawners by spawning
migration year.
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from the trap is closed to change in size. No spawner runs
downstream after getting over the trap. There is neither mor-
tality following marking nor natural mortality between the
time of marking and recapture for marked or unmarked
spawners. H3: there is no tag shedding. H4: the recapture (or
resighting) probability is the same for all the fish whether or
not marked.

Under the “equal catchability assumption” H1, one can
consider the migration of the Ni spawners as independent
Bernoulli experiments with probability of “success” θi. Ac-
cordingly, ci is the observed result of a Binomial experiment
in which each of the Ni spawners has a probability θi of be-
ing caught (T5.1).

Hypotheses H2–H3 enable one to consider that the num-
ber of spawners present on the spawning grounds above the
trap is Ni – xi and that mi are marked among them. In prac-
tice, the recapture sample is obtained by three methods:
electrofishing on the spawning grounds, collection of dead
fish after spawning, and trapping of spent fish at the down-
stream trap of the Cerisel facility. Each of the three recap-
ture methods randomly samples within a fraction of the
Ni – xi fish. Electrofishing samples the fish alive on the
spawning grounds. Recovery of carcasses samples fish dead
after spawning not previously caught alive. Downstream
trapping samples the fish having survived to spawn and not
previously caught alive. As a first approximation to this
more complicated scheme, our modeling approach works as
if the aggregated recapture sample ri was randomly drawn
from the entire population Ni – xi. Under this premise and
further assuming H4, one can consider the recapture sample
ri containing rmi marked fish as a random sample from a
population of total size Ni – xi in which mi fish are marked.
Because every fish recaptured is pelvic-fin clipped, recapture
is a sampling without replacement. The recapture experi-

ment is thus modeled by a Hypergeometric distribution
(T5.2).

Smolt run
For each year i between 1986 and 2001, ci denotes the

number of smolts caught in the downstream trapping facility
during the migration time. Among the ci smolts captured, a
number mi ≤ ci have been tagged (mostly fin-clipped) and re-
leased upstream from the trapping facility used for capture
(Fig. 1). Some of them will be recaptured at the same down-
stream trap. Note that the recapture is not conducted at a lo-
cation downstream from the trap as it is often the case in
mark–recapture experiments. We denote as rmi the number
of tagged and released smolts that are recaptured (rmi ≤ mi).
We make four classical assumptions analogous to H1–H4.
H1′: we assume equal catchability at the downstream trap
(hypothesis analogous to H1). H2′: the population is closed
during the migration time. There is neither mortality induced
by the capture–marking procedure nor natural mortality be-
tween the time of marking and recapture for either marked
or unmarked smolts. H3′: there is no tag shedding and all
smolts marked and released will migrate out. H4′: all mi
marked and released smolts have the same probability of be-
ing recaptured at the downstream trap. We suppose that the
capture and marking does not affect the behavior of the
smolts in a way that would change their vulnerability to the
trap. Thus, the probability of recapture of previously marked
and released smolts is the same as the probability of capture
of unmarked smolts exposed to the trap for the first time.

Under H1′, the first term of the likelihood Li corresponds
to a Binomial sampling distribution (T5.1′). Under H2′–H4′,
one can model the recapture experiment as a Binomial one
with mi trials and rmi successes. H4′ allows one to use in the
recapture Binomial model (T5.2′) the same probability of
“success” θi as in the capture Binomial model. It is a crucial
hypothesis for the estimation procedure. Intuitively, T5.2′
will be used to estimate θi, and T5.1′ will be used to estimate
Ni conditionally on θi.

MCMC simulations and implementation with the
software WinBUGS®

Once the step of describing the stochastic model is
achieved, our model is easily implemented and fitted using
an MCMC algorithm. We used the WinBUGS® software
(Spiegelhalter et al. 2000, available at http://www.mrc-
bsu.cam.ac.uk/bugs) that samples from the joint posterior
distribution using the Metropolis-within-Gibbs sampling al-
gorithm. The WinBUGS® code for all models described in
this paper is available from the authors upon request. The
basic idea behind the Gibbs sampling algorithm is to gener-
ate random draws for all unknown variables by cyclically
sampling from the unidimensional full posterior conditional
distributions of all variables. The latter are obtained by
extracting from the joint posterior distribution the term in-
volving only the variable in turn while treating all others
terms as constant. Meyer and Millar (1999) reported on sig-
nificant progress made in facilitating the routine implemen-
tation of Bayesian analysis thanks to the WinBUGS®

software (see also the review by Gentleman 1997). It simpli-
fies the implementation of the Gibbs sampling by alleviating
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Year ci mi rmi

1986 887 135 91
1987 283 31 24
1988 307 59 43
1989 553 65 43
1990 746 38 35
1991 151 35 27
1992 580 50 43
1993 209 26 24
1994 329 17 10
1995 618 63 53
1996 767 76 58
1997 205 63 31
1998 511 63 31
1999 195 59 45
2000 1849 300 232
2001 688 264 123

Note: ci denotes the number of smolts caught at
the downstream trap; mi is the number of smolts
marked and released; and rmi the number of marked
recaptured. See text for more details about the
experiments.

Table 4. Capture–mark–recapture data for
smolts by migration year.
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the requirement to derive by hand the full conditional distri-
butions. It only requires the declaration of the full Bayesian
model and the specification of the data. Model declaration
consists of the deterministic equations linking the variables,
the prior density of unknown variables, and the sampling
distributions relating data and variables. Initial values for all
unknowns are also needed to start the sampling process.

In any MCMC method, a critical issue is whether the sim-
ulated chain has converged to its ergodic target distribution.
Following the recommendations of Spiegelhalter et al.
(2000), we ran three different chains starting at contrasting
initial values spread over the space of the unknown variables.
We first ran the three MCMC chains for 5000 initial itera-
tions. To diminish the effect of the starting points, these first
5000 iterations were considered a burn-in period and were
discarded. We generated another 20 000 random draws to
derive posterior inferences. We checked convergence of the
chains using the Gelman and Rubin (1992) diagnostics as
modified by Brooks and Gelman (1998) proposed by
WinBUGS®. For most of the models fitted, Gelman–Rubin
diagnostics indicated convergence for the three chains after
those 20 000 iterations. For the others, we reran 20 000 or
40 000 additional simulations to obtain convergence.

The output after convergence of the MCMC chains con-
sists of a joint sample from the posterior distribution of all
unknowns of the model. The integration needed to derive the
marginal posterior distribution of any subset of unknowns is
straightforward. Indeed, the MCMC sample of the subset of
interest is to be considered a sample from its marginal poste-
rior distribution. We summarize marginal posterior distribu-
tions of interest by simple statistics directly computed from
the MCMC samples: mean, median, and 95% Bayesian pos-
terior credibility interval.

Results

Spawning run
Our results show that the inferences obtained under the

ABM may be unreliable and highly sensitive to the choice of
prior distributions. Posterior distributions of the θis and Nis
derived from the ABM, with reference noninformative pri-
ors, vary highly between years in terms of both position and
dispersion (Figs. 2a, 2b). The posterior estimates of the θis
are particularly variable between years (Fig. 2a). However,
the high dispersion of θis observed for years such as 1992
and 1993 does not necessarily have strong repercussion on
the Nis (Fig. 2b). Years with very few adults caught at the
trap are indicative of a low population size, as far as the re-
capture data allow discarding of very low trapping probabili-
ties. Some years have precise and symmetric posterior
distributions of Ni, whereas other years may conversely have
highly dispersed and skewed posteriors (Fig. 2b). For the
latter, the upper bounds of the 95% Bayesian credibility in-
tervals appear unrealistically high given the size of the Oir
River and the available knowledge on the biology and ecol-
ogy of Atlantic salmon. Inferences on the Nis stem from the
hypergeometric recapture experiments and thus depend on
the recapture sample above all. Sparse mark–recapture data,
i.e., low number of marked released or, more importantly,
low number of recaptures of previously marked fish yield
imprecise inferences (e.g., years 1987, 1990, and 1994).
Posterior inferences under the ABM are rather robust to the
choice of the prior on the θis. In contrast, posterior infer-
ences on the Nis are highly sensitive to the prior choice.
Changing the prior distribution of the Nis can have a strong
influence on posterior distributions, especially for data-poor
years (see Appendix A).

Hierarchical modeling greatly improves posterior infer-
ences (Fig. 2): the most precise inferences are obtained un-
der the HBM. It is the hierarchical structure on the Nis that
is the major source of improvement. Compared with the
ABM that assumes independence of both the Nis and the θis,
the hybrid model assuming a hierarchical structure on the θis
alone does not really improve the inferences on the variable
of ultimate interest, Ni, and the sensitivity to the choice of
the prior on the Nis is not alleviated (results not shown).

Spawners Smolts

Observations
di = (ci,xi,mi,ri,rmi) di = (ci,mi,rmi)

Capture models

(T5.1) ci ~ Binomial(Ni,θi) (T5.1′) ci ~ Binomial(Ni,θi)

Recapture models

(T5.2) rmi ~ Hypergeometric(Ni – xi,mi,ri) (T5.2′) rmi ~ Binomial(mi,θi)

Likelihood for year i L(Ni,�i|di) = Li

(T5.3) Li = C
C C
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Note: The subscript i indicates the year of migration; CMR data di for spawners are given in Table 3; ci denotes the number of spawners caught at the
upstream trap; xi denotes the number of spawners that died during manipulation or that are removed for experimental use or hatchery production; mi is the
number of spawners marked and released (mi = ci – xi); ri is the recapture sample; and rmi is the number of fish marked among ri. CMR data di for
smolts are given in Table 4; ci denotes the number of smolts caught at the downstream trap; mi is the number of smolts marked and released; and ri is the
number of marked recaptured. For spawners, Ni denotes the number of upstream migrating fish and qi denotes the upstream trap efficiency. For smolts, Ni

denotes the number of downstream migrating fish and qi denotes the downstream trap efficiency. Notation X ~ Z denotes that the variable X has the
probability distribution Z. See text for details about the hypotheses underlying the model.

Table 5. Observation model and sampling equations for the capture–mark–recapture (CMR) experiments for spawners and smolts.
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Fig. 2. Spawners case. Marginal posterior distributions of (a) the θis (upstream trap efficiency) and (b) the Nis (number of upstream
migrating fish) for years 1984 to 2000 obtained under four model structures. Line styles indicate the model investigated: solid line, hi-
erarchical Bayesian model, with hyperpriors π3 in Table A4 and π2 in Table A5; broken line, hybrid model with hierarchical structure
on the θis only with the hyperprior π3 in Table A4, and the prior π2 in Table A2 on the Nis with Nmax = 2000; broken–dotted line, hy-
brid model with hierarchical structure on the Nis only with the hyperprior π2 in Table A5 and the prior π1 in Table A1 on the θis; dot-
ted line, annual Bayesian model with the prior π1 in Table A1 on the θis and the prior π2 in Table A2 on the Nis with Nmax = 2000.
� and �, 2.5 and 97.5 percentiles, respectively; �, mean; +, median.
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Posterior mean values of the θis are only slightly shrunk to-
ward the overall mean at around 0.5 (Fig. 2a). In contrast,
setting a hierarchical structure on the Nis strongly reduces
the skewness and uncertainty in the estimation of the Nis
(Fig. 2b). The tails of the posterior distributions of the Nis
are drastically shortened. These results appear much more
sensible and realistic than those derived from the ABM. The
reduction in uncertainty is particularly effective for years
with poor CMR data. As expected, the gain in precision is
insignificant for years with CMR data informative enough to
enable precise estimation of the Nis under the ABM. Poste-
rior inferences under the HBM are quite robust to the choice
of priors for the hyperparameters (see Appendix A).

The posterior predictive of the mean trapping efficiency
P(

~θ�data), under the HBM (Fig. 3a), appears rather uninfor-
mative. The transfer of information between years for the
trapping efficiencies is weak. This observation is consistent
with the insignificant effect of setting a hierarchical structure
on the θis. Unlike that of the trapping efficiency, the poste-
rior predictive of the mean population size, P(

~
N |data), is in-

formative with a mean value around 230 and 95% of its
density in the range [40,610] (Fig. 3b). The data of all years
combined allow discarding a priori the possibility of very
high spawner population size (i.e., greater than a thousand)
in any additional year.

Smolt run
In contrast with the spawners case, the CMR data for the

smolts appear to be much more informative and the ABM

framework enables precise estimations that are quite robust
to the prior choice. Posterior distributions of the θis are less
variable between years than for spawners (Fig. 4a). The un-
certainty around posterior estimates is generally much lower
than in the spawners case. Posterior distributions of the Nis
are also less dispersed and less skewed than for the spawn-
ers (Fig. 4b). Accordingly, the posterior inferences derived
under the ABM are rather insensitive to the choice of priors
(see Appendix A).

Unlike in the spawners case, the HBM does not signifi-
cantly improve posterior inferences compared with the ABM
(Fig. 4). The hierarchical structure has more effect on poste-
rior inferences for θis than for Nis. The hierarchical structure
on θi has a slight shrinkage effect that reduces between-year
variation (Fig. 4a): the most extreme estimates of θi are
barely pulled up to the values of the other years (e.g., 1990,
1993, 1994, 1997, and 1998). Posterior distributions of Nis
and θis under the HBM are robust to the choice of priors for
the hyperparameters (see Appendix A).

In contrast with the spawners, both the posterior predic-
tive P(

~θ|data) and P(
~
N |data) for the smolts are informative

(Figs. 3c, 3d). On the basis of the data collected from 1986
to 2001, the probability of capture at the smolt trap is ex-
pected to average 0.7 with a 95% posteriori credibility inter-
val [0.39,0.94]. The smolt run is expected to have 95%
probability of being in the range [90,2500] with a mean of
850. However, the transfer of information between years re-
mains of little use because yearly data are always informa-
tive enough.
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Fig. 3. Profiles of posterior predictive distributions P(
~
θ|data) and P(

~
N |data) derived from the hierarchical Bayesian model in the spawn-

ers case (a and b, respectively) and in the smolts case (c and d, respectively). Hyperpriors used are π3 in Table A4 and π2 in Table
A5. Profiles are frequency histograms issued from the Markov chain Monte Carlo samples.
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Fig. 4. Smolts case. Marginal posterior distributions of (a) the θis (downstream trap efficiency) and (b) the Nis (number of downstream
migrating fish) for years 1986 to 2001 obtained under four model structures. Line styles indicate the model investigated: solid line, hi-
erarchical Bayesian model, with hyperpriors π3 in Table A4 and π2 in Table A5; broken line, hybrid model with a hierarchical struc-
ture on the θis only with the hyperprior π3 in Table A4, and the prior π2 in Table A2 on the Nis with Nmax = 4000; broken–dotted line,
hybrid model with hierarchical structure on the Nis only with the hyperprior π2 in Table A5 and the prior π1 in Table A1 on the θis;
dotted line, annual Bayesian model with the prior π1 in Table A1 on the θis and the prior π2 in Table A2 on the Nis with Nmax = 4000.
� and �, 2.5 and 97.5 percentiles, respectively; �, mean; +, median.
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Discussion

Assessment of founding hypotheses
Like any model for a CMR experiment, our approach re-

lies on the agreement with the classical hypotheses H1–H4
and H1′–H4′ (see Materials and methods section). Warren
and Dempson (1995), Arnason et al. (1996), and Schwarz
and Taylor (1998) discussed how some of those hypotheses
can be relaxed without strong consequences on the popula-
tion size estimates. However, departure from those hypothe-
ses may yield inaccurate estimates. Stratified models
accounting for nonconstant catchability over time or hetero-
geneity in the capture probability between individuals may
be more appropriate than pooled models (Pollock 1981,
1991; Plante et al. 1998). They have been applied to esti-
mate Atlantic salmon migrations (Dempson and Stansbury
1991) or Pacific salmon migrations (Schwarz and Dempson
1994; Miyakoshi and Kudo 1999; Newcomb and Coon
2001). However, in many instances, as in our illustrative
case study, the detailed information required to fit those
models is not available and pooling is necessary. The robust-
ness of pooled models to the departure from their underlying
hypotheses is beyond the scope of this paper, which focuses
on the contribution of hierarchical modeling. Yet, it is worth
keeping in mind that some hypotheses may be questionable.

Hierarchical modeling can significantly improve
inferences

Our paper is focused on the comparative merits of HBM
versus ABM in the estimation of the quantities of interest
and primarily the Nis. Formal statistical procedures, e.g., the
deviance information criteria (DIC; Spiegelhalter et al.
2002), may provide some valuable indication for selecting
the most appropriate model. However, we followed
Spiegelhalter et al. (2002) in believing that such a formal se-
lection approach could be of little relevance when other fea-
tures of the models can be taken into account. We thus
preferred to found the comparison between the models on
two main criteria: the dispersion of posterior inferences of
quantities of ultimate interest, i.e., the Nis, and the sensitiv-
ity to the choice of prior.

In the spawners case, the HBM clearly yields more reli-
able inferences compared with the ABM. However, the hy-
brid model assigning the θis a common hierarchical
distribution while letting the Nis be independent only
slightly modifies the inferences when compared with the
ABM. The yearly CMR data indicate that θis have little in
common between years. This is probably because they are
influenced by the water discharge during the migration sea-
son. In this case, the hierarchical hypothesis on θis has no ef-
fect because there is very little information transferred
among years through the hyperparameters γ. The spread of
the posterior distribution of γ remains wide. As a conse-
quence, the marginal prior on θis is as diffuse as if θis were
assigned independent uninformative priors, and subsequent
inferences are not markedly different.

A noticeable positive effect is obtained by imposing a hi-
erarchical structure on Nis. The spawners CMR data set typi-
fies a survey where data are poor for some years. Inferences
on the Nis based on the ABM are of little reliance when the
number of marks released or the size of the recapture sample

are too small. Consequently, posterior distributions of
estimates are widely dispersed, and some 95% posterior
credibility intervals may spread over ecologically unrealistic
values. Another detrimental effect is high sensitivity to the
prior choice because the data do not contain sufficient infor-
mation to dominate the prior. For certain years, two prior
distributions, both meant to be uninformative, yield mark-
edly different posterior estimates of Nis (see Appendix A).
Several studies have already highlighted such sensitivity
(Raftery 1988; Smith 1991; Garthwaite et al. 1995). Infer-
ences on Nis are also sensitive to minor changes in the data
(Chao 1989) and consequently may be nonrobust to errors
made when collecting data. Thanks to its ability to take ad-
vantage of the whole historical information available, the
HBM limits these undesirable effects and significantly im-
proves the inferences. The posteriors of the Nis are less dis-
persed, more coherent, and more robust to changes in the
prior assumptions. In the HBM, the posterior distribution of
each year in turn is obtained by the combination of the like-
lihood with a modified prior that uses the data from all other
years. This modified prior is informative about the Nis and
the information that it brings is significant compared with
that of a single year with poor data.

In contrast with the spawners case, fitting the HBM to the
smolts data does not significantly improve inferences on the
Nis compared with the ABM. The hierarchical structure on
both θis and Nis has no effect because the likelihood always
dominates the prior. Indeed, unlike in the spawners case, the
yearly CMR data for smolts are highly informative. The in-
formation brought by all years combined is negligible com-
pared with that of any single year. Consequently, the use of a
noninformative prior, as in the ABM, or of an informative
prior based on historical information, as in the HBM, makes
little difference.

The contrasted results obtained for the spawners and the
smolts shows that the contribution of the hierarchical model-
ing is positive or null. In the best case, setting a hierarchical
structure improves the inferences; in the worst case, it re-
mains neutral.

General interest of the hierarchical approach to the
analysis of ecological data

We believe that hierarchical Bayesian modeling has a
great potential of application in the analysis of ecological
data. The interesting properties revealed by our specific
study could be extended to many cases considering a collec-
tion of units in time or space, yet partial commonality can be
assumed across units. Whenever there are enough units to
derive posterior inferences about the hyperparameters, we
encourage the use of an exchangeable hierarchical model.

Hierarchical modeling is almost universally applicable
even when some available knowledge would prevent the
similarities and (or) differences between units from being
modeled as draws from a common probability distribution.
Indeed, any information available to distinguish different
units can be encoded in covariates and accounted for in a
conditional independent model, which assumes partial
exchangeability (Gelman et al. 1995). In our case, it might
have been possible to model the variations of θis with the
water discharge, Qi, by any function of the form θi = f (Qi) +
εi, where εis are random residuals. The partial exchange-
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ability can be invoked by assuming that εis are exchangeable
with hyperparameters Ψ. Exchangeability is then modeled
by the conditional independence in eq. 3:

(3) π(θ|Q1,...,QI, ψ) = π(ψ) π
i=
∏

1

I

(θi|Qi, ψ)

The analysis of data in a hierarchical framework is now
simplified by the use of MCMC algorithms within modern
software such as WinBUGS®. Sensitivity analysis of poste-
rior inferences to the choice of priors is also facilitated.
George and Robert (1992) already showed that CMR models
lend themselves to Bayesian treatment using the Gibbs sam-
pler. However, they faced the practical restrictions that the
prior and the likelihood must lead to conditional posterior
distributions, which are easily amenable to simulations.
WinBUGS® allows for a wide choice of prior and sampling
distributions, even if they lead to highly nonstandard condi-
tional posteriors (Gentleman 1997; Meyer and Millar 1999).
Formulations that would have been avoided in the past be-
cause of analytical and numerical difficulties can now be
easily considered for practical applications. Prior and sam-
pling distributions can be modified without having to
respecify analytically the full conditional probability distri-
butions and without getting bogged down by details about
the densities used.

Because of the transfer of information between years, a
hierarchical framework can accommodate missing data, pro-
vided they are few. In our example concerning smolts, let us
imagine that recapture data is missing for a particular year i.
Even in the absence of yearly data to update θi, the prior
π(θi) will be updated by the data of all years except i, i.e.,
data*

i . This “updated” informative prior allows us to derive
more precise posterior inferences on Ni than the initial prior
π(θi).

To conclude, an exchangeable hierarchical model appears
as a superior methodology to treat many ecological data sets.
As we pointed out, a model that considers each unit inde-
pendently may be considered a particular case of an ex-
changeable hierarchical model. When the data set contains
poorly informative or even missing data, the independence
assumption between the sampling units may lead to widely
dispersed posterior inferences. To reduce uncertainty, one
may be tempted to use informative priors. However, this
generally consists of adapting the prior to the amount of in-
formation brought by the data, e.g., the less informative the
data, the more informative the prior introduced. This may re-
sult in the observations playing a role in determining the
prior distribution, and this practice must be strongly discour-
aged. We encourage others to consider a hierarchical model
as the default choice. As noted by Gelman et al. (1995),
even if the unknown variables to estimate vary highly among
units, it is not irrelevant to estimate them in a hierarchical
framework. For each unit, an updated prior is build by com-
bining information from all experiments in a consistent and
parsimonious framework. This informative prior is scaled to
the between-units (e.g., years in our case study) variability
and each unit’s contribution is judiciously weighed, i.e., de-
pending on how informative its corresponding data are. The
inferences about quantities of interest can be significantly

improved in terms of both precision and robustness to the
choice of prior distributions on hyperparameters.
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Appendix A

Specification of the priors and sensitivity analysis
To investigate the robustness of our conclusions to the

choice of priors, we compared posterior distributions ob-
tained with several priors with various mean and dispersion
features, either informative or not. We first give the distribu-
tion that we tested in the annual Bayesian model (ABM) for
both the θis and the Nis (Tables A1 and A2). Then, we de-

scribe the conditional prior distributions π(θi|γ) and π(Ni|δ)
(Table A3) and the diffuse hyperpriors on γ and δ (Tables
A4 and A5). Almost all of the priors that we used for the Nis
in the ABM and for hyperparameters in the hierarchical
Bayesian model (HBM) are bounded. By restricting the pri-
ors to a finite domain of variation, we ensure that all priors
are proper. We thereby avoid improper posterior distribu-
tions that may arise from the use of improper priors (Gelman
et al. 1995). In the HBM, the ranges used for the
hyperparameters were taken wide enough that the posterior
mass was not accumulated close to the bounds and that in-
creasing the range did not affect the posterior distributions.
We thus ensured that we did not affect a priori null density
to a domain where the likelihood was non-null.

ABM: prior on the θis (Table A1)
Beta distributions were assigned to the θis. The Beta dis-

tribution allows very different shapes and is the natural con-
jugate for the classical Binomial likelihood (Box and Tiao
1992). We tested four different sets for the hyperparameters
(α,β) that reflect different prior opinion. Setting α = β in π1
and π2 yields symmetric distribution around 0.5. π1 is the
standard noninformative prior (Box and Tiao 1992), and π2
corresponds to a Uniform on [0,1] (used by Raftery 1988).
π3 and π4 give strong weight to values of θi close to 0 and
close to 1, respectively. π3 is closed to an improper prior ∝
1/θi used as a noninformative by Garthwaite et al. (1995) for
their multicapture–recapture census model.

ABM: prior on the Nis (Table A2)
We first tested different discrete little informative priors.

They are adapted to situations where only vague prior
knowledge about the Nis is available and when the aim is to
extract the useful information from the data. The bounded
Uniform discrete prior π1 is motivated by its practical conve-
nience (used by Gazey and Staley 1986 or Chao 1989). The
only information that it brings into the analysis is that a zero
probability is assigned to values greater than the truncation
point Nmax. The classical discrete prior π2 is used as an unin-
formative prior by Raftery (1988), Smith (1991), George and
Robert (1992), and Garthwaite et al. (1995). For both π1 and
π2, we assessed the sensitivity of the posterior inferences to
the choice of the bound by testing different values of Nmax.

To avoid the subjective choice of the bounds, we also tried
the Inverse Binomial (or Negative Binomial) as a robust al-
ternative to the Poisson law proposed by Raftery (1988). As
suggested by Smith (1991), we used a two-step prior density
to simulate the Inverse Binomial. If the conditional distribu-
tion of Ni is considered to be Poisson with mean λ, and if λ
has the natural conjugate distribution Gamma(a,b), then the
unconditional distribution of Ni is Inverse Binomial with pa-
rameters (a,b) (see Raftery 1988 or Smith 1991). We first
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π1(θi) ~ Beta(½,½)
π2(θi) ~ Beta(1,1)
π3(θi) ~ Beta(0.01,1)

π4(θi) ~ Beta(1,0.01)

Table A1. Prior distributions for
the θis used in the ABM for both
spawners and smolts.
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used the unbounded uninformative (improper) prior π3 ob-
tained when λ has an improper prior distribution propor-
tional to 1/λ. Practically, we approximated this distribution

by first drawing λ from an Inverse Gamma(0.001,0.001)
(see Meyer and Millar 1999 or Su et al. 2001). π4 reflects
subjective information about the Nis. A priori informative
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Bounds or parameters

Form Spawners Smolts

π1(Ni) Uniform on [0,Nmax] Nmax = 1000,2000,3000 Nmax = 4000,7000,10 000
π2(Ni) 1/N on [1,Nmax] Nmax = 1000,2000,3000 Nmax = 4000,7000,10 000
π3(Ni) Poisson(λ) λ ~ Inverse Gamma(0.001,0.001) λ ~ Inverse Gamma(0.001,0.001)
π4(Ni) Inverse Binomial(a,b) (EN,σN) = (100,20) (EN,σN) = (1500,300)

Note: For both spawners and smolts, (EN,σN) values are grounded on previous knowledge gathered on a nearby river, the Scorff River (Brittany) (see
Baglinière et al. 1993 for the smolts and Prévost 2000 for the spawners).

Table A2. Prior distributions for the Nis used in the ABM.
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Table A3. Beta and Inverse Binomial conditional prior distributions for θi and Ni (Gelman et al. 1995).

Parameters Form Bounds

π1 Initial (α,β) Uniform on [αmin,αmax] × [βmin,βmax] [αmin,αmax] = [0,100]
[βmin,βmax] = [0,100]

π2 u = ln(α/β) Uniform on [umin,umax] × [vmin,vmax] [umin,umax] = [–5,10]
v = ln(α + β) [vmin,vmax] = [–5,10]

π3 (E Vθ θ, ) Eθ ~ Beta(½,½) Vθ min = 1 × 10–20

Vθ|Eθ ∝ 1/Vθ on [Vθ min,Vθ max|Eθ[ Vθ max|Eθ = Eθ(1 – Eθ)

Table A4. Priors on the natural hyperparameters γ = (α,β) or transformed ones used in the HBM for both spawners and smolts.
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Fig. A1. Spawners case. (a) Sensitivity analysis of marginal posterior distributions of the θis to the choice of the prior on the θis in the
annual Bayesian model (ABM). Line styles indicate the four priors on the θis investigated (Table A1): solid line, π1; broken line, π2;
dotted line, π3; broken–dotted line, π4. Prior used on the Nis is π2 in Table A2 with Nmax = 2000. (b) Sensitivity analysis of marginal
posterior distributions of the Nis to the choice of the prior on the Nis in the ABM. Line styles indicate the four priors on the Nis inves-
tigated (Table A2): solid line, π1 with Nmax = 2000; broken line, π2 with Nmax = 2000; dotted line, π3; broken–dotted line, π4. Prior
used on the θis is π1 in Table A1. �and �, 2.5 and 97.5 percentiles, respectively; �, mean; +, median.
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Fig. A2. Smolts case. (a) Sensitivity analysis of marginal posterior distributions of the θis to the choice of the prior on the θis in the
annual Bayesian model (ABM). Line styles indicate the four priors on the θis investigated (Table A1): solid line, π1; broken line, π2;
dotted line, π3; broken–dotted line, π4. Prior used on the Nis is π2 in Table A2 with Nmax = 4000. (b) Sensitivity analysis of marginal
posterior distributions of the Nis to the choice of the prior on the Nis in the ABM. Line styles indicate the four priors on the Nis inves-
tigated (Table A2): solid line, π1 with Nmax = 4000; broken line, π2 with Nmax = 4000; dotted line, π3; broken–dotted line, π4. Prior
used on the θis is π1 in Table A1. � and �, 2.5 and 97.5 percentiles, respectively; �, mean; +, median.
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values are chosen for EN and σN, the mean and standard de-
viation for the Nis. To determine the corresponding (a,b) pa-
rameters of the Inverse Binomial, we use the inverse
transformation between the mean and standard deviation and
the natural parameters in TA3.5.

HBM: conditional priors π(θi|γ) and π(Ni|δ) and
hyperpriors π(γ) and π(δ)

In the HBM, the natural choice for the conditional prior
distributions π(θi |γ) and π(Ni |δ) are the Beta and the Inverse
Binomial distributions, respectively, in Table A3. The pa-
rameters for which a prior distribution must be specified are
the hyperparameters of the Beta and Inverse Binomial, de-
noted γ = (α,β) and δ = (a,b), respectively. These are higher
level parameters and are generally assigned a diffuse
hyperprior distribution to reflect our ignorance about them.
As posterior inferences may be sensitive to the hyperpriors,
we also compared results obtained with several hyperpriors
π(γ) and π(δ), which illustrate different interpretations of our
little knowledge a priori (Tables A4 and A5).

Hyperprior π(γ) (Table A4)
Different forms intended to reflect vague prior informa-

tion about the capture probability have been proposed by
Gelman et al. (1995), George and Robert (1992), and Smith
(1991). The simplest that we tested is π1, a bounded Uniform
distribution on the initial Beta parameter (α,β). Instead of de-
fining a prior directly on (α,β), it could be relevant to set a
prior on some appropriate one-to-one transformed parameters
and then to go back to (α,β) via the inverse transformation. π2
considers a bounded Uniform on the transformed parameters
(log(α/β),log(α + β)) (Gelman et al. 1995). π3 is a non-
informative on (Eθ,Vθ), respectively the mean and variance of
the Beta distribution. The equations TA3.3 give the one-to-
one relationship of (α,β) in terms of (Eθ,Vθ). To ensure that
the parameters (α,β) are >0, Vθ must satisfy the constraint
Vθ < Eθ(1 – Eθ). Practically, to simulate π3, we use a two-step
conditional prior density. We first draw Eθ in a Beta(½,½).
Then, to respect the previous constraint, we draw Vθ in a
noninformative prior ∝ 1/Vθ over the restricted range [Vθ min,
Eθ(1 – Eθ)] conditioned on the value Eθ previously drawn.

Hyperprior π(δ) (Table A5)
The prior distribution π1 is a bounded Uniform on initial

parameters (a,b). π2 corresponds to a noninformative prior

on (EN,VN), respectively the mean and variance of the Inverse
Binomial distribution. Equation TA5.6 gives the expression
of (a,b) in terms of (EN,VN). To simulate π2, we used a two-
step conditional prior density as for π3(Eθ,Vθ). We assigned a
bounded Uniform distribution over ]0,EN max] to EN. To en-
sure that (a,b) are positive, we draw VN in a prior ∝ 1/VN
over the range ]EN,VN max].

Results of the sensitivity analysis

Spawning run
Posterior distributions of the θis in the ABM are slightly

sensitive to the choice of the prior π(θi) (Fig. A1a, Table
A1). This sensitivity has only moderate repercussions on the
posterior of the Nis (results not shown). By contrast, chang-
ing prior distribution on the Nis in the ABM (Table A2) has
strong influence on posterior estimations (Fig. A1b). Two
priors, both meant to be uninformative (π1 and π2, Table
A2), yield markedly different estimates. Moreover, both π1
and π2 (Table A2) lead to very skewed posteriors with tails
that are sensitive to the choice of the truncation point Nmax
(results not shown). Sensitivity to the prior is especially
acute for data-poor years (i.e., 1987, 1990, 1994). For these
years, an informative prior such as π4 (Table A2) dominates
the likelihood, thus leading to markedly different results than
vague priors. Posterior inferences derived under the HBM
are robust to the choice of priors on hyperparameters (Tables
A4 and A5) (results not shown).

Smolt run
Unlike in the spawners case, the results obtained in the

ABM are rather robust to the choice of prior. The sensitivity
to the choice of the prior on the θis is slight (Fig. A2a) and
has hardly any repercussion on the posterior inferences on
the Nis (results not shown). The influence of the priors on
the Nis is much less important than for spawners. The three
different diffuse priors π1, π2, and π3 (Table A2) yield simi-
lar posterior distributions (Fig. A2b). We have not detected
any significant sensitivity to the choice of the bounds Nmax
for π1 and π2 in Table A2 (results not shown). The likelihood
always dominates the prior, even when the informative prior
is used (π4 in Table A2). Posterior inferences are robust to
the choice of priors on hyperparameters (Tables A4 and A5)
(results not shown).

Parameters Form Bounds

π1 Initial (a,b) Uniform on [amin,amax] × [bmin,bmax] [amin,amax] = [0,50]; [bmin,bmax] = [0,50]

π2 (EN,VN) EN ~ Uniform on ]0,EN max]; VN |EN ∝ 1/VN on ]EN,VN max] EN max = 6000; VN max = 1.0 × 106

Table A5. Priors on the natural hyperparameters δ = (a,b) or transformed ones used in the HBM for both spawners and smolts.
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